North Magnet High School
Plants and Plant Propagation
Course Syllabus

Instructor: Tucker Whitaker
E-mail: Tucker.Whitaker@ops.org
Office Phone Number: 557-3400
Plan Periods: A7 & B8
Teacher Web Site Canvas
Office/Classroom Room 234
Best times to contact: Monday-Friday (2:00-3:30 p.m.)

Course Description
This elective course prepares students to produce greenhouse/nursery plants and to maintain plant growth and propagation structures. Topics to be covered include: soils, plants, plant identification, and plant entomology. Courses examine the importance of plant cell structures, functions of cells, plant processes, nonvascular plants, vascular plants, roots, stems, leaves, flowers, and reproduction of plants. Students may be introduced to the biological, environmental, conservation, and ecological concepts encountered in our environment. This course will reinforce and extend students’ understanding of science by associating basic scientific principles and concepts with relevant applications in botany/agriculture. Leadership development and supervised greenhouse experience are an integral part of this course.

Instructional Philosophy
With the successful completion of a science course, students should be expected to look at the world around them making logical connections to science concepts. It is my goal as a science teacher that students leave my classroom with a better understanding how the world around them works and the beauty that comes with that understanding. I believe differentiation and inquiry are strong components used to engage the student in learning scientific concepts. Each student deserves to learn, and an effort should be made to connect with each student to drive that learning. The use of kinesthetic, visual, and auditory based lessons encourages students to be successful, using their personal learning style. Engaging the students in activities and labs will build inquiry skills needed to be taken out into the student’s daily environment. Questioning possibilities, problem solving, and critical thinking skills can increase with the use of inquiry and builds well rounded citizens.

Standards

PP1 Investigate and describe the field of horticultural science
PP1.a Describe the field of horticulture science

PP2 Identify and describe careers in horticulture
PP2.a List skills you should have to ensure success in a horticulture career.

PP3 Investigate and describe the functions, structures, and safety of greenhouses
PP3.a Describe how radiation, conduction, and convection affect temperature in a greenhouse
PP3.b Differentiate between different types of greenhouse structures
PP3.c Understand the importance of safety practices and equipment in horticulture.

PP4 Investigate and describe different varieties of plants in the greenhouse
PP4.a Identify common plants in the greenhouse
PP4.b Understand and be able to appropriately care for plants in the greenhouse

PP5 Investigate and describe the anatomy and physiology of roots
PP5.a Examine the structures and functions of roots in plants.
PP5.b Differentiate the two major types of root systems.
PP5.c Evaluate the health of a root system.

PP6 Investigate and describe the anatomy and physiology of stems
PP6.a Describe the functions of a stem.
PP6.b Recognize the external and internal structures of a stem.
PP6.c Distinguish between the different types of specialized stems.

PP7 Investigate and describe the anatomy and physiology of leaves
PP7.a Describe the main parts of a leaf.
PP7.b Compare common vein patterns and organization found in leaves.

PP8 Investigate and describe the process of photosynthesis and cellular respiration
PP8.a Understand and describe the process of photosynthesis.
PP8.b Understand and describe the process of cellular respiration.
PP8.c Investigate the impact of photosynthesis and respiration on our biosphere.

PP9 Investigate and describe plants sexual reproduction
PP9.a Differentiate between sexual and asexual propagation.
PP9.b Identify and describe the structures and functions of seeds.
PP9.c Identify and describe the structures and functions of flowers.
PP9.d Differentiate between different types of flowers.

PP10 Understand and describe the propagation of plants by cuttings
PP10.a Understand the purpose of asexual propagation.
PP11.a Understand and describe the effect of light on plants.
PP11.b Understand and describe the effect of temperature on plants.
PP11.c Understand and describe the effect of air on plants.
PP11.d Understand and determine water needs of plants.
PP11.e Understand and determine the effect of soil on plants.

PP12 Identify and explore the varieties of plants native in Nebraska
PP12.a Identify and describe various Nebraska plants and their uses

PP13 Understand and describe best pest management practices
PP13.a Identify and evaluate the best pest management practices
PP13.b Identify and describe the types of pests.
PP13.c Investigate the impact of pesticides on our biosphere.

PP14 Investigate and describe appropriate types and placements of plants in a garden
PP14.a Identify the important factors to consider in garden site selection.
PP14.b Determine the types and amounts of vegetables to be grown.
PP14.c Develop and draw a garden plan.
PP14.d Prepare the planting seedbed.

PP15 Identify and describe appropriate uses of horticultural tools
PP15.a Discuss the types of digging and grading hand tools and their uses and care.
PP15.b Explain the major types of pruning and cutting hand tools and their uses and care.
PP15.c Differentiate between the hand and shop tools used in horticulture.

PP16 Identify and describe the different varieties of herbs
PP16.a Identify the major herbs grown for culinary purposes.
PP16.b Understand and explain herb production.
PP10.b Differentiate and describe leaf, root, and stem cuttings for propagation

Critical Knowledge and Skills Students Will Know:
1. The major subdivisions of the horticulture industry.
2. How improvements in technology has impacted horticulture practices over time
3. The various heating and cooling systems in the greenhouse
4. How to identify and differentiate between the various phases of the water cycle in the greenhouse.
5. The structures and functions of roots in plants
6. The external and internal structures of a stem
7. How to distinguish between the different types of specialized stems
8. The main parts of a leaf
9. The common vein patterns and organization found in leaves
10. The process of photosynthesis
11. The process of cellular respiration

Students will be able to:
1. Demonstrate appropriate safety practices
2. Properly identify horticulture equipment.
3. Identify and distinguish between the common greenhouse plants.
4. Appropriately care for the plants in the greenhouse or at home.
5. Identify edible from non-edible plants.
6. Practice and improve observation skills
7. Differentiate between the two major types of root systems
8. Evaluate the health of a root system
9. Describe the functions of a stem
10. Identify major types of leaves and their arrangements
11. Investigate the impact of photosynthesis and respiration on our biosphere

Major Units of Study
Unit 1: Introduction to Horticulture, Greenhouse Structures, Safety, and Gardening (on-going)
Unit 2: Understanding Plant Anatomy & Physiology
Unit 3: Environmental Impacts on Plant Growth

Course Expectations
• Complete coursework, both in and out of class, in a timely fashion.
• Be responsible and respectful towards classes plants- within the classroom, greenhouse, and rooftop garden.
• Wear appropriate clothing for working with soil, plants, water, etc.
• Participate during in-class discussion and cooperative learning opportunities.
• Complete formal lab write-ups.
• Create technology-based projects and presentations.

Class Rules and Expectations
Be Respectful, Be Responsible, Be Accountable

• Rules and guidelines set forth in the student handbook will be followed in this class.
• Respect yourself and all others, both students and adults, by allowing all persons to maintain their dignity, unconditionally. Language should reflect your understanding that this is a classroom in which everyone is welcome and respected, regardless of difference or ability. Show respect for all living things within the classroom, plants included!
• Responsibility falls on you to be in class and on time: entering after the bell has stopped ringing will be counted tardy. It is also my class expectation that you are responsible for bringing your school laptop (w/ charger) to each class session*. You also need to be a responsible, positive advocate for your needs and the needs of others.
 o *Much of our work will be done with the aid of technology (school laptops). If you have not elected to check out a computer, I will have alternatives for you. However, if you elected to check out a device it is expected that you bring it with you to each lesson.
• Responsibility falls on you to wear appropriate attire for working in the greenhouse! Keep yourself looking fresh.
• Be accountable for your education! Be a positive, active participant in my classroom. Have learning materials ready, complete your assignments on time, participate in classroom activities and discussions respectfully, and raise your hand to ask or answer questions.
• Electronic Devices: No electronic devices (cell phones, mp3 players, games, etc.) are permitted to be seen, heard, or used in the classroom at any time, per school policy. Laptops may only be used for classwork, activities, and research. Keep your laptop safely at your desk, do not take your laptop into greenhouse! If you cannot follow this expectation, you will need to do an alternative assignment that does not require the technology.
• Food: Water bottles are encouraged. Please leave other drinks and foods in your locker.

Safety Expectations
Biology is a lab-based course with safety as an essential component. The safety guidelines support and encourage an investigative approach and laboratory instruction, while at the same time assisting in the development of a safe learning environment. Students will follow the Omaha Public Schools district guidelines on safety that is published in the science safety contract. Students will be provided a copy of the guidelines. The students, parents and/or guardians are expected to read the guidelines and sign and return the signature portion of the contract. The student will not be allowed to participate in the lab activities until the signed contract is returned.

Texts
Assessment (please see OPS Secondary Grading practices below for more information)

- Course grades will be determined by planned assessments such as tests, quizzes, projects scored with rubrics, and laboratory write-ups.
- Major tests and/or writing projects are to be expected at the end of each major unit outlined above.
- State Testing: To address state requirements, all 11th grade students will complete the ACT.
- District Testing: The NWEA/MAP test will be administered periodically throughout the school year.

OPS Secondary Grading Practices
All coursework and assessments are judged based on the level of student learning from “below basic” to “advanced.” This course will provide multiple opportunities to achieve at the “proficient” to “advanced” levels. Students are evaluated based on a proficiency scale or project rubric. Proficiency scales for this course are available upon request (teacher will identify location such as portal, teacher website, attached, etc.)

Weighting Assignments (Using A Multiplier)
When entering grades in the grade book, teachers may assign greater weight to some assignments than others. For example, the final exam may impact a student’s summative grade more than a unit test. Teachers will have the option to use the multiplier to weigh both formative and summative assessments to a maximum of 4. If a weight of 2 or more is applied to an assessment, this information will be communicated to students at the time the assessment is announced.

There are three types of coursework

- **Practice** – assignments are brief and done at the beginning of learning to gain initial content (e.g., student responses on white boards, a valid sampling of math problems, keyboarding exercises, and diagramming sentences, checking and recording resting heart rate). Practice assignments are not generally graded for accuracy (descriptive feedback will be provided in class) and are not a part of the grade. Teachers may keep track of practice work to check for completion and students could also track their practice work. Practice work is at the student’s instructional level and may only include Basic (2) level questions.

- **Formative (35% of the final grade)** – assessments/assignments occur during learning to inform and improve instruction. They are minor assignments (e.g., a three paragraph essay, written responses to guiding questions over an assigned reading, completion of a comparison contrast matrix). Formative assignments are graded for accuracy and descriptive feedback is provided. Formative work may be at the student’s instructional level or at the level of the content standard. Formative assessments/assignments will have all levels of learning – Basic (2), Proficient (3), and Advanced (4), which means that for every formative assessment/assignment, students will be able to earn an Advanced (4). Teachers will require students to redo work that is not of high quality to ensure rigor and high expectations. The students’ score on a formative assessment that was redone will be their final score. It is recommended to have three to five formative assessments for every one summative assessment.

- **Summative (65% of the final grade)** – assessments/assignments are major end of learning unit tests or projects used to determine mastery of content or skill (e.g., a research paper, an oral report with a power point, major unit test, and science fair project). Summative assignments are graded for accuracy. Summative assignments assess the student’s progress on grade level standards and may not be written at the student’s instructional level. Summative assessments/assignments will have all levels of learning – Basic (2), Proficient (3), and Advanced (4), which means that for every formative assessment/assignment students will be able to earn an advanced (4).

To maintain alignment of coursework to content standards, which is a key best practice for standards-based grading, teachers will utilize a standardized naming convention for each of the standards within a course. The content standard will be marked on each assignment entered into Infinite Campus (District Grading Program) using all capital letters followed by a colon. After the colon will be the title of the coursework.

At the end of the grading period, scores are converted to a letter grade using this grading scale.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Numerical Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.26 – 4.00</td>
</tr>
<tr>
<td>B</td>
<td>2.51 – 3.25</td>
</tr>
<tr>
<td>C</td>
<td>1.76 – 2.50</td>
</tr>
<tr>
<td>D</td>
<td>1.01 – 1.75</td>
</tr>
<tr>
<td>F</td>
<td>0.00 – 1.00</td>
</tr>
</tbody>
</table>
Redoing/Revising Student Coursework

1. Students are responsible for completing all coursework and assessments as assigned.
2. Students may be allowed redos and revisions of coursework for full credit during that unit of study based upon the teacher’s professional judgment and evidence collected throughout the unit. Scores for student work after retaking, revising or redoing will not be averaged with the first attempt at coursework or assessment but will replace the original student score.
3. Students are expected to complete assessments when given to the class, or if a student was justifiably absent, at a time designated by the teacher.
4. Redoing, retaking or revising will be done at teacher discretion in consultation with the student and parent(s). Teachers may schedule students before, during, or after school to address needed areas of improvement if not convenient during class. The time and location for redoing, retaking or revising will be done at the teacher’s discretion in consultation with the student and parent(s).

Late Coursework

Students are expected to complete coursework on time. Late coursework may be accepted for full credit until the end of the unit based on the teacher’s professional judgment and evidence collected throughout the unit. Accepted late work will not result in a reduction in grade and the M (Missing) will be replaced with the score earned by the student. The teacher or school may make exceptions depending upon student circumstances (such as prolonged absences due to illness).

Missing Coursework

Work not turned in at all will be recorded in Infinite Campus (district grade book) as an M for missing, which calculates to a score of zero.

Independent Practice

The role of independent practice is to develop knowledge and skills effectively and efficiently during the unit of study. Independent practice helps guide the learning process by providing accurate, timely and helpful feedback to students without penalty.

<table>
<thead>
<tr>
<th>Week</th>
<th>Unit Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1 – 3</td>
<td>Introduction to Horticulture, Greenhouse Structures, Safety (Greenhouse Set-up)</td>
</tr>
<tr>
<td>Weeks 4-7</td>
<td>Plant Anatomy and Physiology (Observe and Maintain Greenhouse Plants)</td>
</tr>
<tr>
<td>Weeks 7-9</td>
<td>Environmental Impacts on Plant Growth (Observe and Maintain Greenhouse Plants)</td>
</tr>
</tbody>
</table>